
What Everyone Should Know
About Coding

Computer coding has been taught in schools around
Australia for the last 25 years in one form or another.
However, it was mainly the province of senior high
school and coding was only chosen by students who
had a particular interest in the subject.

The increasing presence of algorithmic and automated
technologies in school means that all teachers will need to
become more familiar with principles of coding design in
order to understand and determine how such technologies
are used in schools.

Furthermore, in recent times, this way of offering coding
has been turned on its head by curriculum authorities, with
coding a compulsory subject for all learners in the junior
years of secondary schooling, through the new Stage 4
Technology syllabus (New South Wales Education Standards
Authority, 2017).

What is coding?

Computer coding is defined as “a list of step-by-step
instructions that get computers to do what you want them
to do” (Australian Government Department of Education and
Training, 2017). While this definition is true, it is extremely
broad and does not explain the heart of what coding is. The
reason that it does not explain the heart of coding is that
writing the step by step instructions comes at the end of the
real cognitive work involved in computer coding.

Below is an outline of the whole process of computer coding:

1.	 Computer coding is a problem-solving process. The
first step in computer coding is to define the problem
that you are going to solve. This is an easy process if
the problem is well defined, but can be difficult if the
problem is ill-defined and/or not easily understood.
Thus, the problem or question is a human one and
necessary framing of the problem is open to human
interpretation.

2.	 The second step in the coding process is finding
patterns that occur that will solve the problem and
expressing those patterns as processes in natural
language. As an example, in Mathematics we can solve
number sequences by finding the pattern.

	 2, 4, 6, __ , __

	 1, 4, 9, ___ , ___

	 6, 28, 496, ___

Finding these patterns are easy in the first two
instances, but almost impossible in the last instance
(they are called perfect numbers). The coder needs
to find patterns in the problem that they are trying to
solve and be able to write the patterns as processes
if they are going to be able to code the solution on a
computer. The patterns that are identified by humans
do not always fit each situation perfectly, and, while
being correct on most occasions, are open to flaws.

3. 	 The third step is writing the processes using instructions 	
	 that can be easily converted to computer code using a
	 programming language. Coders normally use 		
	 pseudocode, which is “like” a programming language 	
	 but is more natural. It is sometimes called structured 	
	 English.

4. 	 The last step is coding the pseudocode using 		
	 instructions that conform to a programming language.

5. 	 It should be noted that steps 3 and 4 can be simplified 	
	 using block-type programming environments that can
	 write computer code for the user. This simplifies the
	 process of turning processes into computer programs, 	
	 but, in doing so, sacrifices the freedom of the coder 	
	 by constraining their ability to modify block structures. 	
	 Examples of block type coding are Lego EV3, EdWare for 	
	 Edison and Scratch.

Introducing coding

Well, the good news is that we complete steps 1 and 2 in
every-day life. All of us have problems to solve and find
processes that we apply to solve them. So in fact you are
already an expert! Initially, I would not go near a computer.
When I start teaching people to code, I will not touch a
computer for two to three weeks. I will start with showing
students how to define problems, find patterns and write
instructions that are unambiguous.

For me, the first step is to write the processes involved in
making a piece of toast. It seems like a very well-defined
problem with a simple pattern, but it is not. Each student
will interpret the problem differently and go to differing
levels of detail. Then I get into the kitchen with a recipe
for spaghetti bolognaise. Some students will follow the

Mr Ben Zunica,
Mathematics and Computing Teacher

Editorial

recipe well and make a delicious meal, while others will not
be so successful. Then I question them about why that is,
focusing on process and ambiguous instructions that can be
interpreted differently. Other factors which can be discussed
include cultural experience and familiarity with what these
foods are and what the end product is supposed to be.

Once these are done, I then move to simple problems from
day-to-day life that are well defined. For example, what
should a driver do when approaching traffic lights? When
should I take an umbrella with me for the day? What is the
five times table? Then move on to problems with differing
levels of interpretation, such as when should I watch Netflix?
Which subject should I study for first? For all of these I would
get the students to write out the answer in natural language.

What to emphasise first

In the initial stages of writing answers to problems using
natural language, there are three very important concepts
that should be emphasised. They are:

1.	 The inputs and the outputs. Make a very clear
connection between what goes in and what must
come out. Having a clear knowledge of these will
help you greatly in defining the problem correctly
and determining the processes required to create the
output. For example, when completing the spaghetti,
make explicit that the ingredients are the inputs, the
bowl of bolognaise is the output and the recipe steps
are the processes. Talk about this for each problem.

2.	 All of the processes that you look at will conform to
three control structures or combinations of them.
Processes will be a sequence, such as making a piece
of toast, a decision (sometimes called branching), like
deciding whether to take an umbrella, or, a repetition of
actions, like when writing the five times table, you are
always repeating the thought of adding by five.

3.	 What data do you need to keep? So, in the example of
deciding what to study, you need to have the data of
an examination timetable in order to make the correct
decision on what to study first.

Emphasising these three concepts will make coding on a
computer much more simple, as coding involves converting
inputs to outputs, the preservation of important data using
variables and writing code as sequences, decisions and loops
(repetition).

Programming language?

Once you can understand and solve simple problems
using processes expressed in natural language, then it is
time to start “real coding”. Convert one of your problems
into pseudocode (this part will be the most challenging
for students) and then use that pseudocode to write
code in the programming language of your choice. The
coding is not as challenging as you may think. Anything
from your pseudocode you do not know how to put into
the programming language can be googled, and, in the
vast majority of cases, an answer to your problem will be
available. Most computer coders are not worried about
changing programming languages because they know that
if they get the problem solving right, then converting it to a
programming language is relatively easy.

Conclusion

One of the worst mistakes anyone can make with coding,
algorithms and automation is to assume it is all about
computers and copying and pasting slabs of code. This is not
coding, and ultimately it will lead to frustrating experiences
as students realise that they are still unable to code, and
teachers may find the outputs of the coding do not solve
complex human problems, or worse, create new problems.

A much richer experience is what I have outlined above.
In seeking to understand this process, you are well placed
to give students tools to solve different kinds of problems,
which can ultimately be coded using a programming
language where this is appropriate. In addition, we will not
become reliant on one programming language or mystified
by coding, but have skills that can be transferred to a
multitude of different languages and situations.

Whilst engaging in such low technology, initial processes
may be less thrilling, less expensive and less magical, if you
stay strong and do the intellectual work first, we can all reap
the benefits later.

Citations and bibliography withheld.

27 Bancroft Avenue Roseville NSW 2069
Postal | Locked Bag 34 Roseville NSW 2069

www.rosevillecollege.com

